California High Speed Rail

Presentation on:

Draft Bay Area to Central Valley
High-Speed Train (HST) Program
Environmental Impact Report/
Environmental Impact Statement
(EIR/EIS)

California High Speed Rail Authority Board (June 27, 2007)

Decision Steps

- Circulation of Draft Program EIR/EIS
- Public Hearing Public & Agency Comments
- Evaluation of Network/Alignment Alternatives & Station Options
- Preferred Alternative Recommendation & Board Direction
- Preparation of Final Program EIR/EIS
- HSRA Board and FRA Decisions
- Project Level EIS/EIR / Preliminary Engineering for Bay Area to Central Valley

Prior Actions

- Authority & Federal Railroad Administration (FRA):
 - Completed StatewideProgram EIR/EIS (Nov. 2005)
 - Selected HSTAlternative (Nov. 2005)
 - Selected HST Routes & Corridors (Nov. 2005)

Bay Area to Central Valley

Authority Directed Staff:

"prepare separate program-level EIR to identify a preferred alignment within the broad corridor between & including the **Altamont Pass &** Pacheco Pass for the **HST** segment connecting the San Francisco Bay Area to the Central Valley."

Purpose of HST System

- Provide Reliable High-speed Electrified Train System that:
 - Links Major Bay Area Cities to the Central Valley, Sacramento, & Southern California
 - Delivers Predictable & Consistent travel times
 - Provides Interfaces between HST System & Major Commercial Airports, Mass Transit & Highway Network to Relieve Capacity Constraints of Existing Transportation System
- In a Manner Sensitive to & Protective of Bay Area to Central Valley Region's & California's Unique Natural Resources.

Evaluation Criteria

Objective	Criteria	
Maximize ridership/revenue potential	Travel time Population/employment catchment area Ridership and revenue forecasts	
Maximize connectivity and accessibility	Intermodal connections	
Minimize operating and capital costs	Length Operational issues Construction issues Capital cost Right-of-way issues/cost	
Maximize compatibility with existing and planned development	Land use compatibility and conflicts Visual quality impacts Transit oriented development potential	
Minimize impacts on natural resources	Water resources impacts Floodplain impacts Wetland impacts Threatened and endangered species impacts	

Evaluation Criteria (continued)

Criteria **Objective Environmental justice impacts** (demographics) Minimize impacts on social and economic Farmland impacts resources **Cultural resources impacts** Parks and recreation impacts Minimize impacts on cultural and parks/wildlife Wildlife refuge impacts refuge resources **Soils/slope constraints** Maximize avoidance of areas with geologic and Seismic constraints soils constraints Hazardous materials/waste constraints Maximize avoidance of areas with potential hazardous materials

High Speed Trains

- State-of-the-art Electrically Powered Steel Wheel-on-Steel-Rail with Automatic Train Control
 - Extensively proven technology:
 Japan +40 years & Europe for +25 years
- Fully Grade-separated (no auto or pedestrian crossing on tracks) & Fenced
- Completely Double Track
 - Four tracks at intermediate stations for express services.

High Speed Trains

- Safest, Most Reliable Form of Transportation
- Speeds in Excess of 200 mph
- Carry up to an Estimated 117
 Million Passengers Annually by 2030
- 124 139 Trains/Day in Each Direction

Scoping

- 12 Agency & Public Scoping Meetings
 - In Conjunction with San Francisco Bay Area Regional Rail Plan Initiation Meetings (November/December 2005)
 - Over 500 people participated
 - Helped Identify Alternatives

Alignments Evaluated

- Alignments Based on:
 - Review of Statewide Program EIS/EIR
 - Previous Studies
 - Scoping Comments
 - Agency Consultation
 - Coordination with Bay Area Regional Rail
 Plan
 - MTC, BART, Caltrain & Authority

Alignment Alternatives

21 Representative Network Alternatives

- To Evaluate How Various Combinations of Alignment Alternatives Meet Purpose & Need & Perform as part of Statewide System
 - Network Length, Capital Costs, O&M Costs, Ridership/ Revenue, Travel Times, Environmental Impacts, etc.
- Variations Include:
 - Direct Service to 0 to 3 City Centers San Jose, San Francisco, and/or Oakland
 - No Bay Crossing or New Dumbarton Bridge or New Transbay Tube

Altamont Pass Network Alternatives

Altamont Pass Network Alternatives (continued)

Pacheco Pass Network Alternatives

Combined Pacheco & Altamont Network Alternatives

Capital Cost Examples

- Base Case Costs (to SF & San Jose)
 - Altamont \$ 12.7 Billion
 - Pacheco \$ 12.4 Billion
- To San Jose Only Costs
 - Altamont \$ 7.7 Billion
 - Pacheco \$ 8.0 Billion
- Highest Cost Per Mile are Network Alts with:
 - Transbay Tube → Cost = ~\$3.8 \$4.0 Billion or
 - Dumbarton Bridge → Cost = ~\$1.3 \$1.7 Billion

Travel Times

Express Train Travel Times*	Altamont (Hours. Min)	Pacheco (Hours. Min)
San Francisco - Los Angeles	2.36	2.38
Oakland - Los Angeles	2.23	2.30
San Jose - Los Angeles	2.19	2.09
San Francisco - Sacramento	1.06	1.47
Oakland - Sacramento	0.53	1.38
San Jose - Sacramento	0.49	1.18

^{*}Using Base Altamont & Pacheco Network Alternatives that assume:

- Altamont Alts with Dumbarton Crossing
- Pacheco Alts with No Transbay Tube .

Travel Conditions

- Direct service to more Bay Area City
 Centers will Result in Greater Benefits
 - Increased Connectivity to Other Transit
 Systems
 - Increased Convenience
 - Improved Travel Times
- Direct connection to SFO (region's hub airport) and/or Oakland International Airport Provides Increased Connectivity for Air Passengers

HST Ridership

- Annual Riders Base Forecasts -Low End (2030)
 - From 79.6 million shortest Pacheco
 Pass Alt with San Jose terminus to 96.2
 million for Pacheco & Altamont (w/local service)

For example → # Riders for Altamont
with service to San Francisco is greater
than # Riders for Altamont with service to
San Francisco & San Jose

Revenues & O&M Costs

- Annual Revenue Base Forecast Low End (2030)
 - From \$2.67 to \$3.18 Billion
- Annual O&M Cost Varies with Network Length & Service Frequency
 - Service Levels are Consistent Across All Network Alternatives
 - Lower O&M Costs for Altamont (~7% less) due to Shorter Sacramento to Bay Area Service

Streams & Waters

- Network Alternatives with New Crossing of San Francisco Bay
 - 38.8 to 40.3 Acres of Direct Waterbody Impacts, including SF Bay, and
 - 44.4 to 56.1 Acres of Direct Wetland Impacts
- Network Alternatives with No Bay Crossing
 - Wetland Impacts Range From 10.7 to 17.5
 Acres for Altamont or Pacheco
 - Up to 25.4 Acres for Combined Altamont +
 Pacheco

Farmlands

- Pacheco Alts Higher Farmland Impacts
 - 368.1 to 383.2 more acres than Altamont Alts
 - Adjusted for 240 additional acres for BNSF-UPRR in Central Valley

Vehicle Miles Traveled

HST Reduces Vehicle
 Miles Traveled (VMT) by
 7% to 12% in Bay Area &
 Central Valley Counties

- -5% VMT Reductions Statewide
- Highest Ridership → Greater VMT Reductions

Energy Savings & Air Emissions Reductions

- HST Saves 22 Million Barrels of Oil Annually
 - Uses 1/3 the Energy / Mile of Air travel
 - Uses 1/5 the Energy / Mile of Auto travel
- HST Reduces CO₂ (Greenhouse Gases) by 17.6 Billion Pounds Annually (2030)
 - Emits 1/10 of Other Pollutants per mile vs.
 Airplane & Auto
- Highest Ridership
 Highest Energy Savings
 - → Highest Air Emissions Reductions

Questions & Answers

